
COP 4610L: Applications in the Enterprise Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Spring 2005

GUI Components: Part 1

COP 4610L: Applications in the Enterprise
Spring 2005

GUI Components: Part 1

School of Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610L/spr2005

COP 4610L: Applications in the Enterprise Page 2 Mark Llewellyn ©

GUI and Event-Driven Programming
• Most users of software will prefer a graphical user-interface

(GUI) -based program over a console-based program any day
of the week.

• A GUI gives an application a distinctive “look” and “feel”.

• Providing different applications with consistent, intuitive user
interface components allows users to be somewhat familiar
with an application, so that they can learn it more quickly and
use it more productively.

• Studies have found that users find GUIs easier to manipulate
and more forgiving when misused.

• The GUI ease of functionality comes at a programming price
– GUI-based programs are more complex in their structure
than console-based programs.

COP 4610L: Applications in the Enterprise Page 3 Mark Llewellyn ©

The Trade-off Between Ease of Use and Software Complexity

Low

High

Complexity

Total Software
Complexity

Difficulty of Use

COP 4610L: Applications in the Enterprise Page 4 Mark Llewellyn ©

Popularity of GUIs
• Despite the complexity of GUI programming, its

dominance in real-world software development makes it
imperative that GUI programming be considered even in
an introductory course such as this one.

• Do not confuse GUI-based programming with applets.
Although some of the features of the first few GUIs that
we look at will be similar to those you used in your first
applet program, notice that we are developing application
programs here not applets.
– The execution of a GUI-based application also begins in its

method main(). However, method main() is normally responsible
only for creating an instance of the GUI.

– After creating the GUI, the flow of control will shift from the
main() method to an event-dispatching loop that will repeatedly
check for user interactions with the GUI.

COP 4610L: Applications in the Enterprise Page 5 Mark Llewellyn ©

Components of the GUI
• GUI’s are built from GUI components. These are sometimes called

controls or widgets (short for windows gadgets) in languages other
than Java.

• A GUI component is an object with which the user interacts via the
mouse, keyboard, or some other input device (voice recognition, light
pen, etc.).

• Many applications that you use on a daily basis use windows or dialog
boxes (also called dialogs) to interact with the user.

• Java’s JOptionPane class (package javax.swing) provides
prepackaged dialog boxes for both input and output.

– These dialogs are displayed by invoking static JOptionPane methods.

• The simple example on the next page illustrates this concept.

COP 4610L: Applications in the Enterprise Page 6 Mark Llewellyn ©

// A simple integer addition program that uses JOptionPane for input and output.
import javax.swing.JOptionPane; // program uses JOptionPane class

public class Addition
{

public static void main(String args[])
{

// obtain user input from JOptionPane input dialogs
String firstNumber =

JOptionPane.showInputDialog("Enter first integer");
String secondNumber =

JOptionPane.showInputDialog("Enter second integer");

// convert String inputs to int values for use in a calculation
int number1 = Integer.parseInt(firstNumber);
int number2 = Integer.parseInt(secondNumber);

int sum = number1 + number2; // add numbers

// display result in a JOptionPane message dialog
JOptionPane.showMessageDialog(null, "The sum is " + sum,

"Sum of Two Integers", JOptionPane.INFORMATION_MESSAGE);
} // end method main

} // end class Addition

Example GUI illustrating
The JOptionPane class

This parameter, called
the Message Dialog
Constant, indicates the
type of information that
the box is displaying to
the user and will cause
the appropriate icon to
appear in the dialog box
(see next page).

COP 4610L: Applications in the Enterprise Page 7 Mark Llewellyn ©

Output from execution
of the Addition Example

User enters their integers
in the dialog box and clicks

OK after entering each.

Result is displayed in a
third dialog box.

The “?” icons appear
because of the input
dialog, the “I” icon
appears because of a
specific parameter.

COP 4610L: Applications in the Enterprise Page 8 Mark Llewellyn ©

Overview of Swing Components
• Java GUI-based programming typically makes use of the swing API.

The swing API provides over 40 different types of graphical
components and 250 classes to support the use of these components.
– JFrame: Represents a titled, bordered window.

– JTextArea: Represents an editable multi-line text entry component.

– JLabel: Displays a single line of uneditable text or icons.

– JTextField: Enables the user to enter data from the keyboard. Can also
be used to display editable or uneditable text.

– JButton: Triggers and event when clicked with the mouse.

– JCheckBox: Specifies an option that can be selected or not selected.

– JComboBox: Provides a drop-down list of items from which the user can
make a selection by clicking an item or possibly by typing into the box.

– JList: Provides a list of items from which the user can make a selection by
clicking on any item in the list. Multiple elements can be selected.

– JPanel: Provides an area in which components can be placed and
organized. Can also be used as a drawing area for graphics.

COP 4610L: Applications in the Enterprise Page 9 Mark Llewellyn ©

Displaying Text and Images in a Window
• Most windows that you will create will be an instance of

class JFrame or a subclass of JFrame.

• JFrame provides the basic attributes and behaviors of a
window that you expect – a title bar at the top of the
window, and buttons to minimize, maximize, and close the
window.

• Since an application’s GUI is typically specific to the
application, most of the examples in this section of the
notes will consist of two classes – a subclass of JFrame
that illustrates a GUI concept and an application class in
which main creates and displays the application’s primary
window.

COP 4610L: Applications in the Enterprise Page 10 Mark Llewellyn ©

Labeling GUI Components
• A typical GUI consists of many components. In a large

GUI, it can be difficult to identify the purpose of every
component unless the GUI designer provides text
instructions or information stating the purpose of each
component.

• Such text is known as a label and is created with class
JLabel (which is a subclass of JComponent).

• A JLabel displays a single line of read-only
(noneditable) text, an image, or both text and an image.

• The sample code on the next page illustrates some of the
features of the JLabel class.

COP 4610L: Applications in the Enterprise Page 11 Mark Llewellyn ©

// Demonstrating the JLabel class.
import java.awt.FlowLayout; // specifies how components are arranged
import javax.swing.JFrame; // provides basic window features
import javax.swing.JLabel; // displays text and images
import javax.swing.SwingConstants; // common constants used with Swing
import javax.swing.Icon; // interface used to manipulate images
import javax.swing.ImageIcon; // loads images

public class LabelFrame extends JFrame
{

private JLabel label1; // JLabel with just text
private JLabel label2; // JLabel constructed with text and icon
private JLabel label3; // JLabel with added text and icon

// LabelFrame constructor adds JLabels to JFrame
public LabelFrame()
{

super("Testing JLabel");
setLayout(new FlowLayout()); // set frame layout

// JLabel constructor with a string argument
label1 = new JLabel("Label with text");
label1.setToolTipText("This is label #1");
add(label1); // add label #1 to JFrame

Example GUI illustrating
The JLabel class

COP 4610L: Applications in the Enterprise Page 12 Mark Llewellyn ©

// JLabel constructor with string, Icon and alignment arguments
Icon home = new ImageIcon(getClass().getResource("home.gif"));
label2 = new JLabel("Label with text and icon", home,

SwingConstants.LEFT);
label2.setToolTipText("This is label #2");
add(label2); // add label #2 to JFrame

label3 = new JLabel(); // JLabel constructor no arguments
label3.setText("Label with icon and text at bottom");
label3.setIcon(home); // add icon to JLabel
label3.setHorizontalTextPosition(SwingConstants.CENTER);
label3.setVerticalTextPosition(SwingConstants.BOTTOM);
label3.setToolTipText("This is label #3");
add(label3); // add label3 to JFrame

} // end LabelFrame constructor
} // end class LabelFrame

LabelFrame class
continues

// Driver class for Testing LabelFrame.
import javax.swing.JFrame;
public class LabelTest {

public static void main(String args[]) {
LabelFrame labelFrame = new LabelFrame(); // create LabelFrame
labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE

);
labelFrame.setSize(220, 180); // set frame size
labelFrame.setVisible(true); // display frame

} // end main
} // end class LabelTest

COP 4610L: Applications in the Enterprise Page 13 Mark Llewellyn ©

Output from execution
of the LabelTest Example

Moving cursor over
the label will display
ToolTipText if GUI

designer provided it.

COP 4610L: Applications in the Enterprise Page 14 Mark Llewellyn ©

GUI Programming
• Besides having a different look and feel from console-based programs,

GUI-based programs follow a different program execution paradigm –
event-driven programming.

• A console-based program begins and ends in its main() method. To
solve the problem, the main method statements are executed in order.
After the last statement in main() executes, the program terminates.

• The execution of a GUI-based program also begins in its main()
method. Normally the main method is responsible only for creating an
instance of the GUI. After creating the GUI, the flow of control passes
to an event-dispatching loop that repeatedly checks for user
interactions with the GUI through action events. When an event
occurs, an action performer method is invoked for each listener of that
event. The performer then processes the interaction. After the
performer handles the event, control is given again to the event-
dispatching loop to watch for future interactions. This process
continues until an action performer signals that the program has
completed its task.

COP 4610L: Applications in the Enterprise Page 15 Mark Llewellyn ©

Console-based Execution

Method main() {
statement1;
statement2;
...
statementm;
}

Console programs begin and
end in main() method.

Console program

COP 4610L: Applications in the Enterprise Page 16 Mark Llewellyn ©

GUI-based Execution
main() {

GUI gui = new GUI();
}

GUI Constructor() {
constructor1;
constructor2;
...
constructorn;

}

Action Performer() {
action1;
action2;
...

actionk;
}

GUI program being in method
main(). The method creates a
new instance of the GUI by
invoking the GUI constructor. On
completion, the event dispatching
loop is started.

GUI Program

The constructor configures the components of
the GUI. Part of the configuration is registering
the listener-performer for user interactions.

The action performer implements the task of the
GUI. After it completes, the event-dispatching
loop is restarted.

do
if an event occurs then

signal its action listeners
until program ends

Event Dispatching Loop
The event dispatching loop watches for user
interactions with the GUI. When a user event
occurs, the listener-performers for that event
are notified.

COP 4610L: Applications in the Enterprise Page 17 Mark Llewellyn ©

GUI Program Structure
• GUI-based programs typically have at least three methods.

– One method is the class method main() that defines an
instance of the GUI.

– The creation of that object is accomplished by invoking a
constructor that creates and initializes the components of the
GUI. The constructor also registers any event listeners that
handle any program-specific responses to user interactions.

– The third method is an action performer instance method
that processes the events of interest. For many GUIs there is
a separate listener-performer object for each of the major
components of the GUI.

– An action performer is always a public instance method
with name actionPerformed().

COP 4610L: Applications in the Enterprise Page 18 Mark Llewellyn ©

GUI Program Structure (cont.)

• GUI-based programs also have instance variables
for representing the graphical components and the
values necessary for its task.

• Thus, a GUI is a true object. Once constructed, a
GUI has attributes and behaviors.

– The attributes are the graphical component instance
variables.

– The behaviors are the actions taken by the GUI when
events occur.

COP 4610L: Applications in the Enterprise Page 19 Mark Llewellyn ©

Specifying A GUI Layout
• When building a GUI, each GUI component must be

attached to a container, such as a window created with a
JFrame. Typically, you must also decide where to
position each GUI component within the container. This is
known as specifying the layout of the GUI components.

• Java provides several layout managers that can help you
position components if you don’t wish for a truly custom
layout.

• Many IDEs provide GUI design tools in which you specify
the exact size and location of each component in a visual
manner using the mouse. The IDE then generates the GUI
code automatically.

COP 4610L: Applications in the Enterprise Page 20 Mark Llewellyn ©

GridLayout Manager (cont.)

• As with all layout managers, you can call the setLayout()
method of the container (or panel) and pass in a layout
manager object. This is done as follows:

• Or you could create an object and pass the object to the
setLayout() method as follows:

//Just use new in the method call because we don’t need
//a reference to the layout manager.
Container canvas = getContentPane();
canvas.setLayout(new GridLayout(4,2));

//Create a layout manager object and pass it to the
//setLayout() method.
Container canvas = getContentPane();
GridLayout grid = new GridLayout(4,2);
canvas.setLayout(grid);

COP 4610L: Applications in the Enterprise Page 21 Mark Llewellyn ©

GridLayout Manager (cont.)

• The following program illustrates how you can change the
layout dimension if necessary and repaint the window.

• This is accomplished by calling the JFrame’s validate()
method to layout current components and repaint() calls
paint().

• Program GridDemo.java fills a frame’s container with
twelve buttons, and ten of the button labels are the names
of cities. Only two buttons are active. When the “Show
Florida Cities” button is clicked, the layout then shows the
buttons with Florida cities. When the “Show Maryland
Cities” button is clicked, the layout changes to show only
the cities in Maryland. Each of these two dialogs also has
one active button, “Show All Cities”. This button toggles
back to the four by three view of all the city buttons.

COP 4610L: Applications in the Enterprise Page 22 Mark Llewellyn ©

//File: GridDemo.java
//This program sets a 4x3 grid layout and then changes it
//to a different grid layout based on the user's choice.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class GridDemo extends JFrame {
//Set up an array of 13 buttons.
JButton buttonArray [] = new JButton [13];
//Set up a String array for the button labels.
String buttonText[] = { "Orlando", "New York","Rock Creek", "Miami",

"Bethesda", "Santa Fe", "Baltimore", "Oxon Hill", "Chicago",
"Sarasota", "Show Florida Cities", "Show Maryland Cities", "Show All
Cities" };

Container canvas = getContentPane();
public GridDemo() {

//Here's where we make our buttons and set their text.
for(int i = 0; i<buttonArray.length; ++i)

buttonArray[i] = new JButton(buttonText[i]);
addAllTheCities();
buttonArray[10].setBackground(Color.cyan);
buttonArray[11].setBackground(Color.magenta);
buttonArray[12].setBackground(Color.green);

Example GUI illustrating
the GridLayout Manager

COP 4610L: Applications in the Enterprise Page 23 Mark Llewellyn ©

//Just going to show the Florida cities.
buttonArray[10].addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae) {
addFloridaCities();
//validate() causes a container to lay out its
//components again after the components it
//contains have been added to or modified.
canvas.validate();
//repaint() forces a call to paint() so that the
//window is repainted.
canvas.repaint();

}
});

//Just going to show the Maryland cities.
buttonArray[11].addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae) {
addMarylandCities();
//validate() causes a container to lay out its
//components again after the components it
//contains have been added to or modified.
canvas.validate();
//repaint() forces a call to paint() so that the
//window is repainted.
canvas.repaint();

}
});

COP 4610L: Applications in the Enterprise Page 24 Mark Llewellyn ©

//Now show all the cities.
buttonArray[12].addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent ae) {
addAllTheCities();
canvas.validate();
canvas.repaint();

}
});
this.setSize(500,150);
this.setTitle("Grid Layout Demonstration Program ");
this.show();

}

//Sets the container's canvas to 4x3 and adds all cities.
public void addAllTheCities() {

canvas.removeAll();
canvas.setLayout(new GridLayout(4, 3));
for(int i = 0; i < 12; ++i) {

canvas.add(buttonArray[i]);
}

}

COP 4610L: Applications in the Enterprise Page 25 Mark Llewellyn ©

//Sets the container's canvas to 2x2 and adds Florida cities.
public void addFloridaCities() {

canvas.removeAll();
canvas.setLayout(new GridLayout(2, 2));
canvas.add(buttonArray[0]);
canvas.add(buttonArray[3]);
canvas.add(buttonArray[9]);
canvas.add(buttonArray[12]);

}
//Sets the container's canvas to 3x2 and adds Maryland cities.
public void addMarylandCities() {

canvas.removeAll();
canvas.setLayout(new GridLayout(3, 2));
canvas.add(buttonArray[2]);
canvas.add(buttonArray[4]);
canvas.add(buttonArray[6]);
canvas.add(buttonArray[7]);
canvas.add(buttonArray[12]);

}

public static void main(String args[])
{

GridDemo app = new GridDemo();
app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

COP 4610L: Applications in the Enterprise Page 26 Mark Llewellyn ©

Output from execution
of the GridDemo Example

Initial window

Resized grid after
clicking “Show Florida

Cities” button

Resized grid after
clicking “Show

Maryland Cities” button

COP 4610L: Applications in the Enterprise Page 27 Mark Llewellyn ©

More on Event Handling
• The previous example illustrates the basic concepts in

event handling.

• Before an application can respond to an event for a
particular GUI component, you must perform several
coding steps:

1. Create a class than represents the event handler.

2. Implement an appropriate interface, known as an event-listener
interface, in the class from Step 1.

3. Indicate than an object of the class from Steps 1 and 2 should be
notified when the event occurs. This is known as registering the
event handler.

COP 4610L: Applications in the Enterprise Page 28 Mark Llewellyn ©

Using A Nested Class to Implement an Event Handler
• The examples so far have all utilized only top-level classes,

i.e., the classes were not nested inside another class.

• Java allows for nested classes (a class declared inside another
class) to be either static or non-static.

• Non-static nested classes are called inner classes and are
frequently used for event handling.

– An inner class is allowed to directly access its top-level class’s
variables and methods, even if they are private.

• Before an object of an inner class can be created, there must
first be an object of the top-level class that contains the inner
class. This is required because an inner class object implicitly
has a reference to an object of its top-level class.

– A nested class that is static does not require an object of its top-
level class and has no implicit reference to an object in the top-
level class.

COP 4610L: Applications in the Enterprise Page 29 Mark Llewellyn ©

// Demonstrating the JTextField class and nested classes
import java.awt.FlowLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;
import javax.swing.JTextField;
import javax.swing.JPasswordField;
import javax.swing.JOptionPane;

public class TextFieldFrame extends JFrame
{

private JTextField textField1; // text field with set size
private JTextField textField2; // text field constructed with text
private JTextField textField3; // text field with text and size
private JPasswordField passwordField; // password field with text

// TextFieldFrame constructor adds JTextFields to JFrame
public TextFieldFrame()
{

super("Testing JTextField and JPasswordField");
setLayout(new FlowLayout()); // set frame layout

// construct textfield with 10 columns
textField1 = new JTextField(10);
add(textField1); // add textField1 to JFrame

Example GUI illustrating
Nested Classes

COP 4610L: Applications in the Enterprise Page 30 Mark Llewellyn ©

// construct textfield with default text
textField2 = new JTextField("Enter text here");
add(textField2); // add textField2 to JFrame

// construct textfield with default text and 21 columns
textField3 = new JTextField("Uneditable text field", 21);
textField3.setEditable(false); // disable editing
add(textField3); // add textField3 to JFrame

// construct passwordfield with default text
passwordField = new JPasswordField("Hidden text");
add(passwordField); // add passwordField to JFrame

// register event handlers
TextFieldHandler handler = new TextFieldHandler();
textField1.addActionListener(handler);
textField2.addActionListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(handler);

} // end TextFieldFrame constructor

COP 4610L: Applications in the Enterprise Page 31 Mark Llewellyn ©

// private inner class for event handling
private class TextFieldHandler implements ActionListener {

// process textfield events

public void actionPerformed(ActionEvent event) {
String string = ""; // declare string to display
// user pressed Enter in JTextField textField1
if (event.getSource() == textField1)

string = String.format("textField1: %s",
event.getActionCommand());

// user pressed Enter in JTextField textField2
else if (event.getSource() == textField2)

string = String.format("textField2: %s",
event.getActionCommand());

// user pressed Enter in JTextField textField3
else if (event.getSource() == textField3)

string = String.format("textField3: %s",
event.getActionCommand());

// user pressed Enter in JTextField passwordField
else if (event.getSource() == passwordField)

string = String.format("passwordField: %s",
new String(passwordField.getPassword()));

// display JTextField content
JOptionPane.showMessageDialog(null, string);

} // end method actionPerformed
} // end private inner class TextFieldHandler

} // end class TextFieldFrame

COP 4610L: Applications in the Enterprise Page 32 Mark Llewellyn ©

// Driver class for testing TextFieldFrame.
import javax.swing.JFrame;

public class TextFieldTest
{

public static void main(String args[])
{

TextFieldFrame textFieldFrame = new TextFieldFrame();
textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
textFieldFrame.setSize(425, 100); // set frame size
textFieldFrame.setVisible(true); // display frame

} // end main
} // end class TextFieldTest

Initial window when
executing TextFieldTest

